ROSSpy

Release 1

Andrew Philip Freiburger

May 22, 2023

CONTENTS

Theory 3
Installation 5
Citation 7
Contents 9
4.1 Usage o e e 9
42 ROSSpy APL o 10
4.3 ROSSpy parameter files e e 14
44 GROSSPY . . . 17

ROSSpy, Release 1

Desalinating ocean water is crucial for meeting the 6th UN Sustainable Development Goal of univeralizing potable
water. Reverse Osmosis (RO) is the leading desalination technology, although, it remains hindered by membrane
scaling, which lessens its energy efficiency and economic practicality. The geochemistry of mineral scaling evades
experimental methods, and existing software programs to simulate scaling geochemistry — e.g. French Creek — are
insufficient to explore all relevant variables and are furthermore inaccessible to many researchers.

Reverse Osmosis Scaling Software in Python (ROSSpy) satisfies this niche in RO research by implementating a one-
dimesnional RO model through PHREEQpy, which is the Python version of PHREEQC. The examples/scaling/
scaling_validation directory of the ROSSpy GitHub details validation studies and sensitivity analyses of ROSSPy
via Notebook examples. We encourage users and developers to critique and improve the open-source (MIT License)
ROSSpy package by creating new GitHub issues or emailing afreiburger @uvic.ca.

CONTENTS 1

https://pypi.org/project/ROSSpy/
https://dx.doi.org/10.2139/ssrn.4124149
https://github.com/freiburgermsu/rosspy/actions
https://pepy.tech/project/rosspy
https://opensource.org/licenses/MIT
https://pypi.org/project/ROSSpy/
https://pypi.org/project/phreeqpy/
https://www.usgs.gov/software/phreeqc-version-3
https://github.com/freiburgermsu/ROSSpy
https://opensource.org/licenses/MIT
https://github.com/freiburgermsu/ROSSpy/issues
mailto:afreiburger@uvic.ca

ROSSpy, Release 1

2 CONTENTS

CHAPTER
ONE

THEORY

The ROSSpy framework represents RO desalination as a 1D reactive transport model of the membrane-solution inter-
face in the RO feed channel. The feed solution is represented as a single, homogeneous, solution. The inlet boundary is
defined by the Dirichlet condition, where the inlet concentrations are assumed to be independent of desalination, with
the feed as an infinite reservoir. The outlet boundary is defined by the Cachy condition, where the effluent concentration
is assumed to be dependent upon the reactive transport processes within the RO module.

Note: This project is under active development.

ROSSpy, Release 1

4 Chapter 1. Theory

CHAPTER
TWO

INSTALLATION

ROSSpy is installed in a command prompt, Powershell, Terminal, or Anaconda Command Prompt via pip:

pip install rosspy

The IPHREEQC module must then be installed, since this is the source of geochemical calculations and data for
ROSSpy. The appropriate version of IPHREEQC can be installed from the USGS .

Installation in Linux distributions, Ubuntu >=20 or an equivalent, requires addition steps (Ubuntu < 20 is currently
unsupported):

wget https://water.usgs.gov/water-resources/software/PHREEQC/iphreeqc-3.7.3-15968.tar.gz
tar -xzvf iphreeqc-3.7.3-15968.tar.gz

cd iphreeqc-3.7.3-15968

./configure

make

make check

sudo make install

pip show phreeqpy

mkdir -p /path/to/site-packages/phreeqpy/iphreeqc

sudo cp /usr/local/lib/libiphreeqc.so /path/to/site-packages/phreeqpy/iphreeqc/
—libiphreeqc.so0.0.0.0

https://water.usgs.gov/water-resources/software/PHREEQC/index.html

ROSSpy, Release 1

6 Chapter 2. Installation

CHAPTER
THREE

CITATION

Please cite this work:

Freiburger, Andrew P. and Molins, Sergi and Buckley, Heather L., A One-Dimensional..
—Reactive Transport Model of Geochemical Scaling in Reverse Osmosis Desalination. http:/
—/dx.doi.org/10.2139/ssrn.4124149

ROSSpy, Release 1

8 Chapter 3. Citation

CHAPTER
FOUR

CONTENTS

4.1 Usage

A complete ROSSpy simulation can be designed and executed through the following example sequence:

conduct a ROSSpy simulation

from rosspy import ROSSPkg

ross = ROSSPkg(database_selection, simulation)
ross.reactive_transport(simulation_time, simulation_perspective, final_cf)
ross.feed_geochemistry(water_selection, water_characteristics)
ross.execute()

4.1.1 Accessible content

A multitude of values are stored within the ROSSpy object, and can be subsequently used in post-processing. The
complete list of these values can be reviewed through the built-in dir () function, which is highlighted in the following
list:

e selected_output & processed_data DataFrame: Pandas DataFrames that possesses the raw and processed sim-
ulation data, respectively, from the PHREEQ simulation.

* elemental_masses dict: A dictionary of the mass for each ion that constitutes scale. This is only determined for
scaling simulations.

* databases & feed_sources 1ist: The available databases and feed waters in the rosspy/databases/ and
rosspy/water_bodies/ directories, respectively.

* elements & minerals dict: Dictionaries of the elements and minerals that are defined by the selected database,
respectively.

* cumulative_cf float: The final effluent CF after the entire simulation

* ro_module & water_body dict: The complete sets of parameterized values for the simulated RO module and
feed water, respectively.

e input_file str: The complete PHREEQ input file that is executed for the simulation.

* predicted_effluent dict: The predicted effluent concentrations of each feed ion.

* parameters & variables dict: Dictionaries with the simulation parameters and calculated variables, respectively.
* results dict: A dictionary with the simulation results and each block of the input file.

* simulation_shifts £loat: The number of simulation shifts.

* water_mw & water_gL float: The molecular weight and density of water, respectively.

https://pandas.pydata.org/pandas-docs/stable/reference/frame.html

ROSSpy, Release 1

e chem_mw ChemMW: The ChemMW object from the ChemW module, which allows users to calculate the molecular
weight from any chemical formula or chemical common name. The formatting specifications are detailed in the
README of the ChemW module.

4.2 ROSSpy API

4.2.1 ROSSPkg()

The only class in the ROSSpy module is ROSSPkg. The initial parameters for the class package are defined:

import rosspy

ross = rosspy.ROSSPkg(database_selection, simulation = 'scaling', simulation_type =

— "transport', operating_system = 'windows',

export_content = True, domain_phase = None, quantity_of _modules = 1, simulation_title =_
—.None, verbose = False, printing = True, jupyter = False)

* database_selection str: specifies which PHREEQ database file — Amm, ColdChem, corel0, frezchem, iso,
11nl, minteq, minteq.v4, phreeqc, pitzer, sit, Tipping_Hurley, or wateq4f — will be imported and
simulated. These databases were all processed via PHREEQdb of the ChemW module (in this specific Notebook:
here).

* simulation str: specifies whether the scaling or brine of the simulation data will be processed.

 simulation_type str: specifies whether RO reactive transport transport or simple evaporation will be sim-
ulated.

* operating_system str: specifies whether the user is using a windows or unix system, which directs importing
PHREEQpy and commenting in the PQT PHREEQ input files.

* export_content bool: species whether the simulation contents will be exported.

* domain_phase str: specifies the simulated domain model, where None executes the single-domain model and
mobile (i.e. bulk solution) or immobile (i.e. the CP solution layer) specify the respective solutions of the
dual-domain model, where the latter two options are still under development.

* quantity_of_modules int: specifies the simulated number of in-series RO modules.
* simulation_title str: specifies the simulation title in the PHREEQC PQI input file.

* verbose, printing, & jupyter bool: The first two parameters specify whether simulation details and calculated
values will be printed, respectively. The last parameter specifies whether the simulation is executed within a
Jupyter Notebook, which allows display () to better illustrate tables and figures.

reactive_transport()

The spatiotemporal transport specifications are defined through the following parameters:

ross.reactive_transport(simulation_time, simulation_perspective = None, final_cf = None,..
—.module_characteristics = {}, ro_module = 'BWi30-400', permeate_efficiency = 1,

head_loss = 0.1, evaporation_steps = 15, cells_per_module = 12, coarse_timestep = True,.
—kinematic_flow_velocity = None, exchange_factor = 1e5)

 simulation_time £loat: specifies the total simulated time in seconds.

10 Chapter 4. Contents

https://pypi.org/project/ChemW/
https://pypi.org/project/ChemW/
https://github.com/freiburgermsu/ChemW/blob/main/examples/PHREEQ/PHREEQ%20databases.ipynb

ROSSpy, Release 1

e simulation_perspective str: specifies whether the simulation data is slice a) at the final timestep
(all_distance) or b) at the final module cell (all_time). These perspectives allow data to be two-
dimensionally graphed either over the module or over the simulated time, respectively, where None defaults
to all_time for brine simulations and all_distance for scaling simulations.

* final_cf float: specifies the permeate flux calculation method, where None signifies the 1inear_permeate
method while any numerical value of the effluent CF signifies the 1inear_cf method. These methods differ
only in that the former distributes less scale at the beginning of the module and more scale at the end of the
module, relative to the latter.

e module_characteristics dict: specifies characteristics of the simulated RO module, which sup-
plant default values from the DOW FILMTEC BW30-400 RO module. The optional dic-
tionary keys — module_diameter_mm, permeate_tube_diameter_mm, module_length_m,
permeate_flow_m3_per_day, max_feed_flow_m3_per_hour, membrane_thickness_mm,
feed_thickness_mm, active_m2, permeate_thickness_mm, polysulfonic_layer_thickness_mm,
support_layer_thickness_mm — are themselves dictionaries with at least a key-value pair of value and the
value, in the proper units in the characteristic name:

{
"active_m2": {
"value":37
1,
"permeate_thickness_mm": {
"value":0.3
}1
"polysulfonic_layer_thickness_mm": {
"value":0.05
}

ro_module str: specifies the RO module that will be simulated from the defined entries in the ro_module.
json parameter file. This additionally provides the default parameters that supplement values from the
module_characteristics argument.

permeate_efficiency float: specifies the 0<=PE<=1 proportion of calculated permeate flux that is simulated,
as a means of representing diminished efficacy from a fouled module: e.g. PE=1 denotes a perfectly operational
module and PE=0.5 denotes a 50% operational module, etc.

head_loss float: specifies the 0<=HL<=1 head loss of effluent pressure relative to the influent. The default
value of 0.1 corresponds to an 10% pressure drop over the course of desalination through the module.

cells_per_module int: specifies the quantity of cells into which the RO module is discretized, and thereby
controls distance resolution.

coarse_timestep bool: specifies whether a timestep that is 12x greater than the Courant condition minimum
is used, where False uses the Courant condition. The smaller timestep marginally improves resolution, at the
expense of ~6x greater execution time.

kinematic_flow_velocity £loat: specifies the kinetic flow velocity of the feed solution, where None defaults to
9.33E-7 (m"2/sec).

exchange_factor float: specifies the rate (1/sec) of solution exchange between the mobile (bulk) and immobile
(concentration polarization) solutions of a dual-domain simulation.

4.2. ROSSpy API 11

https://doi.org/10.1063/1.3109795
https://doi.org/10.1063/1.3109795

ROSSpy, Release 1

feed_geochemistry()

The feed geochemistry is defined through the following parameters:

ross.feed_geochemistry(water_selection = , water_characteristics = {}, solution_
—description = '', ignored_minerals = [], existing_scale = {}, parameterized_ph_charge.

—= True)

* water_selection str: specifies a parameter file of a feed water from the rosspy/water_bodies directory, where
the default options encompass natural waters — the red_sea and the mediterranean_sea — and produced
waters of fracking oil wells — the bakken_formation, marcellus_appalachian_basin, michigan_basin,
north_german_basin, palo_duro_basin, and western_pennsylvania_basin. Parameter files for other
feed waters can be created by emulating the syntax of these default files and storing the created file in the afore-
mentioned directory, which is elaborated in the parameter_files documentation page.

* water_characteristics dict: defines the geochemistry and conditions of the feed that can supplant values from
the water_selection. The expected keys — element, temperature (C), pe, Alkalinity, and pH — each
possess a dictionary value, with the keys of value for the numerical value and optionally others to express meta-
data: e.g. reference to denote the source of the numerical value. The element key deviates slightly from this
organization by using another sub-dictionary layer for each ion in the feed, where the keys are concentration
(ppm) for its ppm concentration, optionally form for the mineral form or charge-state of the ion, and optionally
reference with the same aforementioned purpose:

{
"element": {
"Mn": {
"concentration (ppm)": 0.000734,
"reference": "El Sayed, Aminot, and Kerouel, 1994"
1,
"Siv: {
"concentration (ppm)": 95,
"reference": "Haluszczak, Rose, and Kump, 2013",
"form": "Si02"
}
1,
"temperature (O)": {
"value": 24,
"reference": "Dresel and Rose, 2010"
}
}

* solution_description str: a brief solution description that can replace the water_selection in the simulation
folder name.

* ignored_minerals 1ist: defines the minerals that will be excluded from the set of minerals that could hypothet-
ically precipitate from the feed.

* existing_scale dict: specifies pre-existing scaling in the simulated module, where the keys are the corresponding
minerals and the values are sub-dictionaries with saturation and initial_moles as keys — which represent
the pre-existing saturation index and the moles of the mineral, respectively — and the corresponding values are
the numerical values.

* parameterized_ph_charge bool: specifies whether the pH will be charge balanced, which is exclusive with pa-
rameterizing feed alkalinity.

12 Chapter 4. Contents

ROSSpy, Release 1

parse_input()

This function can import, parse, and execute pre-existing PHREEQ input files:

ross.parse_input(input_file_path, water_selection = None, active_m2= None)

* input_file_path str: specifies the path of the existing input file that will be imported and parsed.
e water_selection str: describes the simulated feed water.

e active_m2 float: defines the area of active filtration in the simulated RO module, where None defaults to 37
from the standard FILMTEC BW30-400 module.

execute()

The input file is executed through PHREEQ:

processed_data = ross.execute(simulation_name = None, selected_output_path = None,.
—simulation_directory = None, figure_title = None, title_font = 'xx-large',

label_font = 'x-large', x_label_number = 6, export_name = None, export_format = 'svg',.
—scale_ions = True, define_paths = True, selected_output_filename = None)

* simulation_name str: specifies the name of the folder that will be created and populated with simulation con-
tents.

e selected_output_path str: specifies the path of a simulation output file that will be processed into data tables and
figures, which does not execute a new file and thus can process old data, where None executes the parameterized
PHREEQ input file.

* simulation_directory str: The path to where the simulation content will be saved, where None signifies the
current working directory.

* figure_title str: specifies the title of the simulation figure, where None defaults to customized titles that incor-
porate unique simulation details: e.g. scaling or brine, the water body, and the total simulation time.

e title_font & label_font str: specifications of the MatPlotLib fonts — xx-small, x-small, small, medium,
large, x-large, or xx-large — for the figure title and axis labels, respectively.

e x_label_number int: quantifies the x-axis ticks in the simulation figure.

* export_name str: specifies the export name of the simulation figure. The default name for brine simulations
is brine, while the default name for scaling simulations is all_minerals.

* export_format str: specifies the format of the exported simulation figure, from the MatPlotLib options — svg,
pdf, png, jpeg, jpg, or eps — where svg is the default as a lossless and highly editable format: e.g. via Inkscape.

* scale_ions bool: specifies whether the scale from scaling simulations will be reduced into proportions of
individual ions, which is exported as a JSON file.

* define_paths bool: specifies, for the iROSSpy Notebook, whether the simulation path will be determined to
prevent redundant folder creation.

e selected_output_filename str: specifies the name of the SELECTED_OUTPUT file, where None constructs a
name with important simulation parameters.

Returned processed_data DataFrame: A Pandas DataFrames that possesses the processed simulation data, as conve-
nient access for post-processing.

4.2. ROSSpy API 13

https://inkscape.org/
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html

ROSSpy, Release 1

test()

ROSSpy can execute a simple test simulation via the test () function:

import rosspy
ross = rosspy.ROSSPkg(database_selection, simulation)
ross.test()

4.3 ROSSpy parameter files

Simulation parameters may be more succinctly provided through JSON files, which are imported by the code through
identified function arguments, than through dictionaries that are passed as function arguments. Argument parameters
can be used synergistically by supplanting specific characteristics that are different in the parameter files.

4.3.1 ro_module

The RO module characteristics can be provided through ro_module. json. The default entry embodies the DOW
FILMTEC BW30-400 RO module; however, other modules can be defined by emulating the structure of the default
entry, where each characteristic possesses the respective units in the key name:

{
"BW30-400":{
"module_diameter_mm": {
"value": 201
1,
"permeate_tube_diameter_mm": {
"value": 29
1,
"module_length_m": {
"value": 1.016
1,
"permeate_flow_m3_per_hour": {
"value": 1.667
1,
"max_feed_flow_m3_per_hour": {
"value": 15.9
1,
"feed_thickness_mm": {
"value": 0.8636
1,
"active_m2": {
"value": 37
},
"permeate_thickness_mm": {
"value": 0.3
1,
"membrane_thickness_mm": {
"value": 0.25

3

olysulfonic_layer_thickness_mm": {

(continues on next page)

14 Chapter 4. Contents

ROSSpy, Release 1

(continued from previous page)

"value": 0.05
}

upport_layer_thickness_mm": {
"value": 0.15

* module_diameter_mm dict: specifies the total diameter of the RO module.
» permeate_tube_diameter_mm dict: specifies the diameter of the permeate tube within the RO module.
* module_length_m dict: specifies the total length of the RO module.

» permeate_flow_m3_per_hour & max_feed_flow_m3_per_hour dict: specify the permeate and maximum feed
flows through the RO module.

e feed_thickness_mm dict: defines the thickness of the feed spacer through which the feed passes.
e active_m2 dict: defines the total filtration area of the RO module.
* permeate_thickness_mm dict: defines the thickness of the permeate spacer.

* membrane_thickness_mm & polysulfonic_layer_thickness_mm & support_layer_thickness_mm dict: define the
thickensses of each layer in the composite filtration membrane: the polyamide layer that filters the feed, and the
polysulfonic and support layers that provide resiliency to the membrane structure, respectively.

Other key:value sub-dictionaries may be introduced as metadata for the parameters.

4.3.2 water_bodies

The feed geochemistry may be defined as a parameter file, in the water_bodies folder within the rosspy package
directory, that supplements feed characteristics as a dictionary through the feed_geochemistry function. The default
files in this folder embody curated experimental data from both natural and produced water sources, which can be
emulated for constructing files for other water sources, which each characteristic is expressed with the respective units
in its key name:

{
"element": {
"Mn": {
"concentration (ppm)": 3000,
"reference": "Haluszczak, Rose, and Kump, 2013 [estimated from another.,
—Marcellus publication]"
1,
"Fe": {
"concentration (ppm)": 26.6,
"reference": "Chapman et al., 2012"
1,
"B": {
"concentration (ppm)": 20,
"reference": "Haluszczak, Rose, and Kump, 2013 [reported average form another,
—Marcellus publication]"
1,
"C1l": {

"concentration (ppm)": 81900,

(continues on next page)

4.3. ROSSpy parameter files 15

ROSSpy, Release 1

(continued from previous page)

"reference": "Chapman et al., 2012"

1,
"Na": {
"concentration (ppm)": 32800,
"reference": "Chapman et al., 2012"
1,
"S6)": {
"concentration (ppm)": 45,
"reference": "Haluszczak, Rose, and Kump, 2013 [estimated from another.,
—Marcellus publication]"
1,
"Ca": {
"concentration (ppm)": 8786,
"reference": "Chapman et al., 2012"
1,
"K": {
"concentration (ppm)": 350,
"reference": "Haluszczak, Rose, and Kump, 2013 [estimated from another,
—Marcellus publication]"
}!
"Mg": {
"concentration (ppm)": 841,
"reference": "Chapman et al., 2012"
1,
"Sr": {
"concentration (ppm)": 2415,
"reference": "Chapman et al., 2012"
1,
"Ba": {
"concentration (ppm)": 962,
"reference": "Chapman et al., 2012"
1,
"Li": {
"concentration (ppm)": 95,
"reference": "Haluszczak, Rose, and Kump, 2013 [reported average from another,
—Marcellus publication]"
}
1,
"temperature (C)": {
"value": 24,
"reference": "Dresel and Rose, 2010"
1,
"pe": {
"value": null,
"reference": null
1,
"Alkalinity": {
"value": 71,
"reference": "Haluszczak, Rose, and Kump, 2013 [reported average from another.

—Marcellus publication]",
"form": "CaCO3"
1,

(continues on next page)

16 Chapter 4. Contents

ROSSpy, Release 1

(continued from previous page)

"pH": {
"value": 7,
"reference": "Haluszczak, Rose, and Kump, 2013 [estimated from another Marcellus,
—publication]"”
}

}

* element dict: specifies all of the elements that are present in the feed, with sub-dictionaries of their concen-
trations and metadata. Some of these elements will not be amenable with some databases, which ROSSpy will
simply ignore when defining the input file for an incompatible database.

e temperature (C), pe, Alkalinity, & pH dict: specify conditions and characteristics of the feed solution, with
sub-directories of their respective value, chemical formula, and optionally metadata.

4.4 iROSSpy

The essential functionality of ROSSpy has been adapted into an interactive Notebook through MyBinder. The Notebook
cell allows the investigator to execute the script and intuitively design, execute, and/or process a ROSSpy simulation
through the Notebook console, where the simulation results are conveniently printed. This Binder is intended to support
non-technical investigators who still desire to simulate scaling and brine formation from desalination without using an
APL

4.4. iROSSpy 17

https://mybinder.org/v2/gh/freiburgermsu/rosspy/main?labpath=irosspy%2Firosspy.ipynb

	Theory
	Installation
	Citation
	Contents
	Usage
	Accessible content

	ROSSpy API
	ROSSPkg()
	reactive_transport()
	feed_geochemistry()
	parse_input()
	execute()
	test()

	ROSSpy parameter files
	ro_module
	water_bodies

	iROSSpy

